top of page


Publications: Welcome
  1. Kaur S, Tam NY, McDonough MA*, Schofield CJ*, Aik WS*. Mechanisms of Substrate Recognition and N6-Methyladenosine Demethylation Revealed by Crystal Structures of ALKBH5-RNA Complexes. Nuc. Acids. Res. (2022), 50, 4148-4160.

  2. Shishodia S, Demetriades M, Zhang D, Tam NY, Maheswaran P, Clunie-O’Connor C, Tumber A, Leung IKH, Ng YM, Leissing TM, El-Sagheer AH, Salah E, Brown T, Aik WS*, McDonough MA*, Schofield CJ*. Structure Based Design of Selective Fat Mass and Obesity Associated Protein (FTO) Inhibitors. J. Med. Chem. (2021), 64, 16609–16625.

  3. Sun Y, Aik WS, Yang XC, Marzluff WF, Dominski Z, Tong L. Reconstitution and biochemical assays of an active human histone pre-mRNA 3’-end processing machinery. Methods in Enzymology. (2021), 655, 291-324.

  4. Lo HS, Hui KPY, Lai HM, He X, Khan KS, Kaur S, Huang J, Li Z, Chan AKN, Cheung HHY, Ng KC, Ho JCW, Chen YW, Ma B, Cheung PMH, Shin D, Wang K, Lee MH, Selisko B, Eydoux C, Guillemot JC, Carnard B, Wu KP, Liang PH, Dikic I, Zuo Z, Chan FKL, Hui DSC, Mok VCT, Wong KB, Mok CKP, Ko H, Aik WS, Chan MCW, Ng WL. Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with Remdesivir. ACS Cent. Sci. (2021) 7, 792-802.

  5. Wu Y, Tam WS, Chau HF, Kaur S, Thor W, Aik WS, Chan WL, Zweckstetter M, Wong KL. Solid-phase fluorescent BODIPY-peptide synthesis via in situ dipyrrin construction. Chem. Sci. (2020) 11, 11266-11273.

  6. Yang X, Sun Y, Aik WS, Marzluff WF, Tong L, Dominski Z. Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5’-3’ exonuclease. RNA. (2020) 26: 1345-1359.

  7. Sun, Y., Zhang, Y., Aik, W.S., Yang, X., Marzluff, W.F., Walz, T., Dominski, Z., Tong, L. Structure of an active human histone pre-mRNA 3’-end processing machinery (2020) Science, 367 (6478), pp. 700-703.

  8. Bucholc, K., Aik, W.S., Yang, X., Wang, K., Zhou Z.H., Dadlez, M., Marzluff W.F., Tong, L., Dominski, Z. Composition and processing activity of a semi-recombinant holo U7 snRNP (2020) Nucleic Acids Research, 48 (3), pp. 1508-1530.

  9. Aik, W.S., Lin, M.-H., Tan, D., Tripathy, A., Marzluff, W.F., Dominski, Z., Chou, C.-Y., Tong, L. The N-terminal domains of FLASH and Lsm11 form a 2:1 heterotrimer for histone pre-mRNA 3’-end processing (2017) PLoS ONE, 12 (10), art. no. e0186034.

  10. Horita, S., Scotti, J.S., Thinnes, C., Mottaghi-Taromsari, Y.S., Thalhammer, A., Ge, W., Aik, W., Loenarz, C., Schofield, C.J., McDonough, M.A. Structure of the ribosomal oxygenase OGFOD1 provides insights into the regio- and stereoselectivity of prolyl hydroxylases (2015) Structure, 23 (4), pp. 639-652.

  11. McMurray, F., Demetriades, M., Aik, W., Merkestein, M., Kramer, H., Andrew, D.S., Scudamore, C.L., Hough, T.A., Wells, S., Ashcroft, F.M., McDonough, M.A., Schofield, C.J., Cox, R.D. Pharmacological inhibition of FTO (2015) PLoS ONE, 10 (4), art. no. e0121829.

  12. Aik, W.S., Chowdhury, R., Clifton, I.J., Hopkinson, R.J., Leissing, T., McDonough, M.A., Nowak, R., Schofield, C.J., Walport, L.J. Introduction to structural studies on 2-oxoglutarate-dependent oxygenases and related enzymes (2015) RSC Metallobiology, 2015-January (3), pp. 59-94.

  13. Scotti, J.S., Leung, I.K.H., Ge, W., Bentley, M.A., Paps, J., Kramer, H.B., Lee, J., Aik, W., Choi, H., Paulsen, S.M., Bowman, L.A.H., Loik, N.D., Horita, S., Ho, C.-H., Kershaw, N.J., Tang, C.M., Claridge, T.D.W., Preston, G.M., McDonough, M.A., Schofield, C.J. Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation (2014) Proceedings of the National Academy of Sciences of the United States of America, 111 (37), pp. 13331-13336.

  14. Xu, C., Liu, K., Tempel, W., Demetriades, M., Aik, W., Schofield, C.J., Min, J. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation (2014) Journal of Biological Chemistry, 289 (25), pp. 17299-17311.

  15. Aik, W., Scotti, J.S., Choi, H., Gong, L., Demetriades, M., Schofield, C.J., McDonough, M.A. Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation (2014) Nucleic Acids Research, 42 (7), pp. 4741-4754.

  16. Brem, J., Van Berkel, S.S., Aik, W., Rydzik, A.M., Avison, M.B., Pettinati, I., Umland, K.-D., Kawamura, A., Spencer, J., Claridge, T.D.W., McDonough, M.A., Schofield, C.J. Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β 2-lactamase inhibition (2014) Nature Chemistry, 6 (12), pp. 1084-1090.

  17. Hopkinson, R.J., Tumber, A., Yapp, C., Chowdhury, R., Aik, W., Che, K.H., Li, X.S., Kristensen, J.B.L., King, O.N.F., Chan, M.C., Yeoh, K.K., Choi, H., Walport, L.J., Thinnes, C.C., Bush, J.T., Lejeune, C., Rydzik, A.M., Rose, N.R., Bagg, E.A., McDonough, M.A., Krojer, T.J., Yue, W.W., Ng, S.S., Olsen, L., Brennan, P.E., Oppermann, U., Müller, S., Klose, R.J., Ratcliffe, P.J., Schofield, C.J., Kawamura, A. 5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation (2013) Chemical Science, 4 (8), pp. 3110-3117.

  18. Aik, W., Demetriades, M., Hamdan, M.K.K., Bagg, E.A.L., Yeoh, K.K., Lejeune, C., Zhang, Z., McDonough, M.A., Schofield, C.J. Structural basis for inhibition of the fat mass and obesity associated protein (FTO) (2013) Journal of Medicinal Chemistry, 56 (9), pp. 3680-3688.

  19. Aik, W., McDonough, M.A., Thalhammer, A., Chowdhury, R., Schofield, C.J. Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases (2012) Current Opinion in Structural Biology, 22 (6), pp. 691-700.

  20. Woon, E.C.Y., Demetriades, M., Bagg, E.A.L., Aik, W., Krylova, S.M., Ma, J.H.Y., Chan, M., Walport, L.J., Wegman, D.W., Dack, K.N., McDonough, M.A., Krylov, S.N., Schofield, C.J. Dynamic combinatorial mass spectrometry leads to inhibitors of a 2-oxoglutarate-dependent nucleic acid demethylase (2012) Journal of Medicinal Chemistry, 55 (5), pp. 2173-2184.

  21. Thalhammer, A., Aik, W., Bagg, E.A.L., Schofield, C.J. The potential of 2-oxoglutarate oxygenases acting on nucleic acids as therapeutic targets (2012) Drug Discovery Today: Therapeutic Strategies, 9 (2-3), pp. e91-e100. 

Publications: Text
bottom of page